Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 51(1): 694-706, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37665982

RESUMO

PURPOSE: A joint Working Group of the American Association of Physicists in Medicine (AAPM), the European Society for Radiotherapy and Oncology (ESTRO), and the Australasian Brachytherapy Group (ABG) was created to aid in the transition from the AAPM TG-43 dose calculation formalism, the current standard, to model-based dose calculations. This work establishes the first test cases for low-energy photon-emitting brachytherapy using model-based dose calculation algorithms (MBDCAs). ACQUISITION AND VALIDATION METHODS: Five test cases are developed: (1) a single model 6711 125 I brachytherapy seed in water, 13 seeds (2) individually and (3) in combination in water, (4) the full Collaborative Ocular Melanoma Study (COMS) 16 mm eye plaque in water, and (5) the full plaque in a realistic eye phantom. Calculations are done with four Monte Carlo (MC) codes and a research version of a commercial treatment planning system (TPS). For all test cases, local agreement of MC codes was within ∼2.5% and global agreement was ∼2% (4% for test case 5). MC agreement was within expected uncertainties. Local agreement of TPS with MC was within 5% for test case 1 and ∼20% for test cases 4 and 5, and global agreement was within 0.4% for test case 1 and 10% for test cases 4 and 5. DATA FORMAT AND USAGE NOTES: Dose distributions for each set of MC and TPS calculations are available online (https://doi.org/10.52519/00005) along with input files and all other information necessary to repeat the calculations. POTENTIAL APPLICATIONS: These data can be used to support commissioning of MBDCAs for low-energy brachytherapy as recommended by TGs 186 and 221 and AAPM Report 372. This work additionally lays out a sample framework for the development of test cases that can be extended to other applications beyond eye plaque brachytherapy.


Assuntos
Braquiterapia , Neoplasias Oculares , Melanoma , Humanos , Dosagem Radioterapêutica , Melanoma/radioterapia , Radiometria , Neoplasias Oculares/radioterapia , Método de Monte Carlo , Água , Planejamento da Radioterapia Assistida por Computador
2.
Phys Med ; 107: 102516, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36804693

RESUMO

PURPOSE: This work has the purpose of validating the Monte Carlo toolkit TOol for PArticle Simulation (TOPAS) for low-dose-rate (LDR) brachytherapy uses. METHODS AND MATERIALS: Simulations of 12 LDR sources and 2 COMS eye plaques (10 mm and 20 mm in diameter) and comparisons with published reference data from the Carleton Laboratory for Radiotherapy Physics (CLRP), the TG-43 consensus data and the TG-129 consensus data were performed. Sources from the IROC Houston Source Registry were modeled. The OncoSeed 6711 and the SelectSeed 130.002 were also modeled for historical reasons. For each source, the dose rate constant, the radial dose function and the anisotropy functions at 0.5, 1 and 5 cm were extracted. For the eye plaques (loaded with 125I sources), dose distribution maps, dose profiles along the central axis and transverse axis were calculated. RESULTS: Dose rate constants for 11 of the 12 sources are within 4% of the consensus data and within 2% of the CLRP data. The radial dose functions and anisotropy functions are mostly within 2% of the CLRP data. In average, 92% of all voxels are within 1% of the CLRP data for the eye plaques dose distributions. The dose profiles are within 0.5% (central axis) and 1% (transverse axis) of the reference data. CONCLUSION: The TOPAS MC toolkit was validated for LDR brachytherapy applications. Single-seed and multi-seed results agree with the published reference data. TOPAS has several benefits such as a simplified approach to MC simulations and an accessible brachytherapy package including comprehensive learning resources.


Assuntos
Braquiterapia , Braquiterapia/métodos , Simulação por Computador , Método de Monte Carlo , Anisotropia , Consenso , Dosagem Radioterapêutica , Radiometria/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...